Electric mobility in Bulgaria

Electric mobility Introduction

- What is an electric car?
- First prototypes late 1820s
- Electric mobility on par with Gas mobility until the 1930s of the 20th century
- Revival after the Second World War, the oil crises of the 1970s and 1980s. Today.
- Versatility of applicable technologies

- World economy transition to green technologies, due to the growing public awareness towards:
 - Pollution, Recycling
 - Fossil fuels scarcity and growing prices, unstable oil supplying regions
 - Advanced technologies

- Energy efficiency and Renewable Energy Systems
- Ecological and environmentally friendly technologies

Legal environment, strategic and priority framework International level:

- Kyoto Protocol
- United Nations Framework Convention on Climate Change

- EU economy recovery plan, issued by the EU commission, Nov. 2008, which states: "promote, research and development activities in safe and energy efficient mobility, particularly in electric mobility"

- European commission's "Energy roadmap 2050" National level:
 - National strategies
 - National legislative initiatives

Regional, municipal level:

- Energy efficiency/clean energy municipal incentives
- Tax, tolls, etc. incentives
- Others

Predicted global sales of ecological vehicles

Source: A.T. Confidence Index 2010: 44 countries, 17 industries; Top Level Management Interviews

Challenges

- Research & Development
 - Batteries, energy storage
 - Vehicle technology for electric mobility
 - Technology for infrastructure/system and grid integration
- Regulation and Standardization issues
- Impacts on energy efficiency and greenhouse gas emissions

The electric mobility cluster in Bulgaria 1952-1989

The Cluster in 1989: - 39 manufacturing plants, 8 of which – abroad;
- A sub-cluster of 4 R&D establishments under Bulgarian Academy of Sciences' umbrella

Supply chain

Design/ R&D	Inbound logistics	Production	Outbound logistics	Sales and marketing	Mainte nance
Research and Development (-) Components design (+) Chassis design (-) External design (+) Internal design (+)	Batteries (+) Electric motors (+) Electronics/ CPU (+) Chassis assembly (-) Interior components (+) Supplementary products (tires, accessories, etc.) (+)	Assembly (+) Finishing (+) Quality control and testing (-) Standards (-)	Logistics (+) Distribution (+)	Marketing and promotion (+) Wholesale trade (-) Retail trade (+)	Warranty and maintenance (-) Spare parts (+)

Bulgarian Electric mobility cluster today – milestone examples and case studies

Foreign Development Companies:

- Yazaki
- Curtis Balkan
- Melexis
- EPIQ
- MONTURET
- GRAMMER
- PALFINGER
- Se Bordnetze
- Great Wall
- Zero Carbon

Local Development Companies:

- Kostov Motors
- DINAMO
- ELPROM Elhovo
- ELHIM Iskra
- MONBAT
- CAPRONI
- M+S Hydraulic
- HES
- KIRKOVO
- Drouzhba
- Madara
- PRESKOV
- Magnetic Media Automotive

Competences:

Alternators; Starters; Ignition; Electric Motors; Converters; Electronic modules; Int. Circuits (ASICs) for automotive electronics; Cylinder heads; Engine blocks; Brake parts; Armrests & seats; Automotive wiring harnesses; Hydraulic cylinders; Pistons and pistons sets; Rear and front driving truck axles; Trailers and ball races; Brake drums; Ball joints; Link bolts; End pieces; Axial rods, AC&BLDC servo drives, frequency invertors (drives, wind & PV), electronic modules for power electronics etc.

Why Bulgaria?

- Historical endowments in the sector
- Good strategic location + low factor cost within the Single market (0 import-export tariffs)
- Good macroeconomic environment (currency board, low taxes)
- Access to EU funding
- Opportunity to build a regional cluster in Southeast Europe with Bulgaria as a leader

Strategy

- **1. Manufacturing of electric vehicles** (drive-trains and batteries) and components for them;
- 2. Manufacturing of charging stations/battery-swap stations;
- 3. Conversion services;
- **4. Development of specialized Educational facilities** in electric mobility engineering.

Full package of Adding Value - Design & R&D; Manufacturing, Testing, Marketing

Goal: Electric Mobility Industry – Headliner in Bulgarian economy in 2020. R&D

Strategy

Conversion

- Investments & sector capacity development
- // Legal initiatives
- // Technological park
- Margets and indicators

Strategy The 3 Stages Approach

Stage 1 - Sparks

• Raise a cluster awareness – identify relevant companies, list them, make them meet together and discuss cooperation;

- Trigger the conversion process;
- Establish government initiatives and subsidies;
- Channel EU and other financial schemes to the cluster;
- Academic reforms;
- Subsidiary infrastructure

Success Indicators: Grown

public and industrial awareness of the sector. Companies and Academic Institutions start diversifying competences towards electric mobility

Stage 2 – Flame

- Draw a large multinational manufacturer and consolidate the industry around it;
- Attempt to establish Bulgarian brands;
- Boost marketing for Bulgaria as a top high-tech destination in electric mobility;
- Induce R&D activities of Bulgarian based companies within the cluster – soft measures and subsidies;
- Boost internal non-conversion demand for EM

Success Indicators: Drawn

considerable strategic FDI; Bigger, more consolidated and integrated Bulgarian based companies; Created the brand "Bulgaria"; Growth of Bulgarian filed patents. Spin-off industries thriving around the EM cluster

Stage 3 - Fire

- Establish a national high-tech innovation powerhouse (Lovech could be the Electric Mobility capital of Eastern Europe). The capital will host a technology park and manufacturing plants;
- Further induce the process of technology transfer between business and
- universities/laboratories;
- Promote internationalization of EM higher education in Bulgaria;

Success Indicators: A

Bulgarian city, dubbed "EM Capital"; Created sophisticated, high-end innovation infrastructure. EM employs 150k people.

Strategy

// Investments and sector capacity development

- Cluster development financing and Strategy development (economic aspects, standardization, certification, legal initiatives, education, etc.
- Company development and capacity building
 - EU financing
 - Venture funds
 - Strategic investors
 - Investment/equity funds
 - Marketing and promotion
- Education
- Infrastructure

Strategy

- Legal initiatives
 - National strategies
 - FDI sector strategy
 - Act on investment attraction
 - Local investment legislation
 - Municipal initiatives
 - Registration, standardization and safety legislation

Strategy Electric vehicle conversion – Why?

For customers

- EVs are still **expensive**
- Conversion of old vehicle is estimated to be **under EUR 7000**
- 1.46 EUR / 100 km !
- All **incentives** for EVs are valid here free parking, tax rebates, etc.

For Industry/Government

- The **essential technologies** for electric drives, energy storage and grid infrastructure have been developed
- Initial step to test the capacity of EV market
- Conversion will **further develop production** and assembly of vehicle components supply industry in BG.
- Conversion will promote new technologies to **grow the economy** in the present economic situation
- Multisectoral cooperation energy suppliers, public utilities, ICT service providers and research institutions will also **benefit**
- Creation of **new jobs** for highly skilled personnel
- Producing a lot of converted EVs => development of power grid stations => pushes EV production

Strategy Conversion – Why?

Table: Specs and expected retail price of some EVs in the market or coming into the market

Powert rain		Model	Туре	Battery pack (kWh)	Range (mi)	Acceleration (sec/60mph)	Expected Retail Price
		Tesla Model S	Sports car	42	300	5.6	\$57,400
		Tesla Roadster	Roadster	53	236	3.9	\$109,000
BEV		Nissan Leaf	small	24	100	5.4	\$32,780
BLV		Mitsubishi iMiEV	City car	16	100	13.5	\$32,000
		BYDe6	medium	48	200	8	\$40,000
		Think City	small	28.3	130	20	\$40,000
PHEV		Prius + Hymotion	medium	5	40	9.8	\$35,000
		BYD F3DM	sedan	13.2	62	10.5	\$21,900
ReEV		Chevy Volt	sedan	16	40	6	\$35,000
		Opel Ampera	sedan	16	37.5	9	\$35,000

Source: Plug-In Electric Vehicle Introduction in the EU by F. J. de Sisternes. 2010

Present market of EVs and expected price depict that EVs are still expensive

Strategy Conversion – Why?

Figure: Estimates of PHEV' incremental manufacturing cost over conventional vehicles

The **considerable price premium** of electric vehicles – mainly caused by the high cost battery system – remains the major drawback of electric vehicles. Only if considerable cost reductions can be achieved in the future, electric vehicles are likely to penetrate the automotive market at relevant production volumes.

Strategy Battery Costs

Figure: Estimates of EV Li-ion battery

- 81% of the total cost of a EV drive system can be attributed to the battery
- High cost of the battery
- Depends on the production volume battery costs are expected to decrease as battery production volumes raise
- Market for EVs is still highly uncertain, estimates for future battery cost vary widely

Strategy

Users	Fuel /liters/		Price of fuel /EUR/		Electricity (kWh)		Price of electricity /EUR/		Economic effect /EUR/	
	50 000 km	100 000 km	50 000 km	100 000 km	50 000	100 000	50 000	100 000	50 000 km	100 000 km
Automobile/ EV	3 000	6 000	3 651	7 302	7 500	15 000	728	1 455	2 924	5 847
Firm with 5 automobiles	4 000	8 000	4 868	9 736	12 500	25 000	1 213	2 425	3 656	7 311
Minibus	7 000	14 000	8 519	17 038	17 500	35 000	1 698	3 395	6 822	13 643
Truck	7 000	14 000	8 519	17 038	17 500	35 000	1 698	3 395	6 822	13 643
Firm with 5 trucks	35 000	70 000	42 595	85 190	87 500	175 000	8 488	16 975	34 108	68 215

Source (methodology): EVIC – Electric vehicles industrial cluster

Source (prices): www.energy.eu

* The estimates above are made at an average consumption **per 100 km**, as follows:

- Unleaded fuel (Euro95) at price (as of June 12, 2011) of 1.217 EUR/liter (2.38 BGN/l): automobile – 6 liters, minibus – 14 l., truck – 14 l.

- Electricity at price (as of January, 2011) of 0.097 EUR/kWh: automobile – 15 kWh, minibus – 35 kWh, truck – 35 kWh.

Fuel cost savings over the driven lifetime of an EV are **significant**. This depends on fuel and electricity prices. With present fuel and electricity prices, EV adoption can bring significant economic fuel savings for consumers.

Strategy Programs for EV Conversion – How?

Challenges

- Need to have an **authorization** for conversion from the representatives of all auto importers in Bulgaria
- The traffic control authorities shall prepare **model and standards** for the registration of vehicles with electric drive conversion.
- Develop advanced conversion technology of ICVs to electric drive parameters for conversion shall be determined (maximum speed, mileage per charge, battery size, electric drive).
- Safety inspections
- Need to have enough technicians/firms, ready to start converting their car-repair business to electric-car-repair through technical courses

Programs

- Converter firms in Bulgaria will purchase **new vehicles** without an engine and related equipment and then perform the conversion.
- Conversion of **used vehicles**, usually with non-functioning engines, as such defective vehicles can be quite inexpensive to purchase. No need of special authorization.
- Kit models for conversion for different makes and models of ICEV (internal combustion engine vehicle). These kit models shall have indicative price for conversion, which would depend of tax relieves, financial incentives benefits provided by the respective municipality.
- Fleets are expected to be first customers

Technology Park

What is a Technology park?

Science + R&D meet Business Identity Specific, common shared Infrastructure Innovations Powerhouse Incubator

SWOT Analysis

Strengths

Weaknesses

Opportunities

Threats

 Good geographic 	Small market;	Create and market	• FDI is not a prerequisite
location – proximity to	 Incompetitive education 	Bulgarian high-tech	for R&D and innovations
large markets, including	curriculums	brands;	driven economy. BG could
the EU Single market	 Very low expenditure on 	 Become a manufacturing 	stay a factor driven
 Benign tax policies; 	R&D	and logistic hub for	economy
 Good literacy of the 	 Old and worn out 	Chinese/other	 Strengths and
population, including	infrastructure, including	investments within the EU	Opportunities are <u>not</u>
technical literacy;	industrial, educational	Common market	unique for Bulgaria –
 Stable currency and 	and scientific;	Create the proper	other countries could go
macroeconomic	 Negative connotation on 	environment for	first
environment;	the brand "Bulgaria"	innovative firms to thrive	• In the case of el. mobility
 History/experience in 	 Low and weak level of 	– EU and other funding	– high prices, unknown
high-value added	clustering - existing	Cooperation with	product, underdeveloped
industries, including	facilities export 100%;	existing facilities in	technology = risks
electric mobility;	 Incompetitive rivalry; 	neighbor countries –	 The underperformance
 Existing manufacturing 	 Underperforming legal 	Serbia, Romania, Greece,	of Greece could pose
infrastructure in electrical	system;	Turkey	treats for the whole region
equipment;	 Not sufficient protection 	 Induce R&D in electric 	
• MONBAT;	on Intellectual Property	mobility and become a	
 Good and recognized IT 	Rights	global high-tech center	
specialists;		 Fortified flows of FDI on 	
Outsource		a global scale – in 2014 –	
establishments of global		expected to reach 2007	
companies		levels. BG could draw	
• Cluster could evolve on a		investments in	
regional level		sustainable, high-tech	
_		industries	

Simplified Battery Electric Vehicle Value Chain

- Largest share of value is captured in the middle of the value chain
- Need for calibration of components
- Plant and equipment specialization
- Vertically integrated automakers

Simplified Battery Electric Vehicle Value Chain

- Much less collaboration between suppliers and automakers
- Simplification of production line, leading to lower entry barriers
- Industry standardization of components

Summary

Belchev Motors, Stara Zagora, Bulgaria

